Mathématiques

Question

Bonsoir je bloque sur cet exercice quelqu'un pourrait m'aider s'il vous plaît ?

Merci d'avance
Bonsoir je bloque sur cet exercice quelqu'un pourrait m'aider s'il vous plaît ? Merci d'avance
Bonsoir je bloque sur cet exercice quelqu'un pourrait m'aider s'il vous plaît ? Merci d'avance

1 Réponse

  • Réponse :

    1) Montrer que le triangle ABC est rectangle

    AB² = (2+2)²+ (-1-5)² = 16+36 =52

    BC² = (5-2)²+ (1+1)² = 9+4 = 13

    AC² = (5+2)²+ (1-5)² = 49+16 = 65

    On applique la réciproque du théorème de Thalès

    AB²+BC² = 52+13 = 65

    AC² = 65

    or AB²+BC² = AC² ⇒ donc le triangle ABC est rectangle en B

    3) déterminer les coordonnées du point d'intersection D tel que ABCD soit un rectangle

    il faut que les diagonales (AC) et (BD) se coupent au même milieu et sont égales

    soit D(x ; y)

    AC  ;    x = (5-2)/2 = 3/2

               y = (1+5)/2 = 3

    BD ;     xd +2)/2 = 3/2 ⇒ xd + 2 = 3 ⇒ x = 1

               yd - 1)/2 = 3 ⇒ yd - 1 = 6 ⇒ yd = 7

    D(1 ; 7)

    BD² = (1 - 2)² + (7 +1)² = 1 + 64 = 65 ⇒ BD = √65

    Donc on a  AC = BD  

    Explications étape par étape