Mathématiques

Question

pouvez vous m'aider mercis en avance :

1) développer et réduire l'expression A = 2x(x-1)-4(x-1)

2) montrer que A peut s'écrire (x-1)(2x-4)

3) résoudre l'équation A= 0

2 Réponse

  • Bonjour,

    1) 2x(x - 1)-4(x -1)

    [tex] = 2 {x}^{2} - 2x - 4x + 4[/tex]

    [tex] = 2 {x}^{2} - 6x + 4[/tex]

    2) (x - 1)(2x - 4)

    [tex] = 2 {x}^{2} - 4x - 2x + 4[/tex]

    [tex] = 2 {x}^{2} - 6x + 4[/tex]

    Donc a peut s'écrire de cette manière

    3)

    [tex](x - 1)(2x - 4) = 0[/tex]

    [tex]x - 1 = 0[/tex]

    [tex]x = 1[/tex]

    [tex]ou[/tex]

    [tex]2x - 4 = 0[/tex]

    [tex]2x = 4[/tex]

    [tex]x = \frac{4}{2} [/tex]

    [tex]x = 2[/tex]

    S { 1 ; 2 }

  • bonjour à toi aussi :(

    1) développer et réduire l'expression A = 2x(x-1)-4(x-1)

    TU SAIS QUE :

    k (a+b) = k*a + k*b                          avec *  = multiplié par..

    donc

    A = 2x*x + 2x*(-1) - (4*x + 4*(-1))

    et tu calcules :

    A = 2x² - 2x - 4x + 4

    tu réduis :

    A = 2x² - 6x + 4

    2) montrer que A peut s'écrire (x-1)(2x-4)

    = factoriser..

    A = 2x (x-1) - 4 (x-1)

    facteur commun : (x-1)

    A = (x-1) (2x-4)

    3) résoudre l'équation A= 0

    donc résoudre (x-1) (2x-4) = 0

    soit x - 1 = 0 => x = ... tu sais le faire :)

    soit 2x - 4 = 0 => 2x = 4 = > x = ...

    :)

Autres questions