Mathématiques

Question

Bonjour pouvez vous m’aidez pour l’exercice 2 svp
Merci
Bonjour pouvez vous m’aidez pour l’exercice 2 svp Merci

2 Réponse

  • bonjour

    je ne les fais pas tous, tu as une formule de calcul donc applique la

    x² + 7 x + 12 = 0

    Δ = 49 - 4 ( 1 *12) = 49 - 48  = 1

    x 1 = ( - 7 + 1 ) / 2 = - 6/2 = - 3

    x 2 = ( - 7 - 1)/2 = - 8/2 = - 4

    x² - 3 x - 10  = 0

    Δ = ( - 3)² - 4 ( 1 * - 10 ) = 9 + 40 = 49

    x² = ( 3  + 7) / 2 = 5

    x 2 = ( 3 - 7) / 2 = - 2

    2 x² + 6 x + 4 = 0

    Δ = 36 -  4 ( 2 *4) = 36 - 32 = 4

    x ² = ( - 6 + 2 )/4 = - 4/4 = - 1

    x x = ( - 6 - 2) / 4 = - 8/4 = - 2

    continue  

  • Réponse :

    EX2   Calculer delta (Δ)

    x² + 7 x + 12 = 0  ⇒ Δ = b² - 4 ac

                                       = 7² - 4*1*12

                                       = 49 - 48 = 1

    ⇒ Δ = 1

    x² - 3 x - 10 = 0 ⇒ Δ = (-3)² - 4 *1*(- 10)

                                     = 9 + 40 = 49

    ⇒ Δ = 49

    2 x² + 6 x + 4 = 0 ⇒ Δ = 6² - 4*2*4

                                        = 36 - 32 = 4

    ⇒ Δ = 4

    2 x² + 2 x - 12 = 0 ⇒ Δ = 2² - 4*2*(-12)

                                         = 4 +96 = 100

    ⇒ Δ = 100

    x² + 8 x + 16 = 0 ⇒ Δ = 8² - 4*1*16

                                      = 64 - 64 = 0

    ⇒ Δ = 0

    x² + 2 x + 5 = 0 ⇒ Δ = 2² - 4*1*5

                                     = 4 - 20 = - 16

    ⇒ Δ = - 16

    Solution de l'équation

    2 x² + 6 x + 4 = 0  

     Δ = 4  ⇒ Δ > 0 ⇒ l'équation possède deux solutions distinctes

    √Δ = √4 = 2

    x1 = (- 6 + 2)/2*2 = - 4/4 = - 1

    x2 = - 6 - 2)/4 = - 8/4 = - 2

    2 x² + 2 x - 12 = 0

     Δ = 100 ⇒ Δ > 0  l'équation a deux solutions distinctes

     √Δ = √100 = 10

    x1 = - 2 + 10)/4 = 8/4 = 2

    x2 = - 2 - 10)/4 = - 12/4 = - 3

    x² - 3 x - 10 = 0

      Δ = 49  > 0 ⇒ l'équation possède 2 solutions distinctes

    √49  = 7

    x1 = 3 +7)/2 = 5

    x2 = 3 - 7)/2 = - 2

    Explications étape par étape